Code: EC4T2, EM4T1, EE4T6

II B. Tech - II Semester – Regular Examinations - JUNE 2014

PULSE AND DIGITAL CIRCUITS (Common for ECE, ECM, EEE)

Duration: 3 hours Marks: 5x14=70

Answer any FIVE questions. All questions carry equal marks

1. a) Prove that how a low pass RC circuit behaves like a differentiator circuit. Explain with necessary assumptions.

7 M

- b) A symmetrical square wave having the following properties is applied to a RC high pass circuit with R= 1 KΩ, C=1μF. Explain the behavior of the RC high pass circuit for triangular wave input with neat sketches:
 Peak to peak amplitude ± 5 V, frequency of the signal is 1KHz.
- 2. a) Explain the operation of a parallel clipper (consider the circuit without any external battery) with a neat sketches.

7 M

- b) Explain the operation of a negative clamper circuit (consider the circuit without any external battery) with a neat sketches.

 7 M
- 3. a) Explain the operation of a Schmitt trigger circuit with a neat sketches.

 7 M
 - b) Explain the operation of a fixed bias transistor binary with neat sketches.

 7 M

- 4. a) Explain the operation of a emitter-coupled mono stable multi vibrator with neat sketches. 7 M
 - b) Design a collector-coupled mono stable multi vibrator using an n-p-n Silicon transistor with $h_{FE(min)} = 40$, $v_{BE\,(cut\,off)} \approx 0$ V and $I_{B(sat)} = 1.5I_{B(min)}$. Given that: VCC = 10 V, $I_{C(sat)} = 5$ mA, $R_{C1} = R_{C2} = R_{C}$, $V_{CE(sat)} = 0.2$ V and $V_{BE(sat)} = 0.7$ V. If the pulse width required is 1 ms, calculate the value of C. 7 M
- 5) Explain the transistor current time base generator in detail with neat sketches.

 14 M
- 6. a) Explain in detail about synchronization in sweep circuits.

 7 M
 - b) Explain sine wave synchronization with a sweep circuit.
 7 M
- 7. a) Explain how a pedestal in logic gates can be reduced? 7 M
 - b) Explain the operation of uni-directional logic for multiinput gates with neat sketches. 7 M
- 8. a) Explain how a transistor can work as a switch with neat diagrams 7 M
 - b) Determine base and collector resistors for the transistor inverter if I_{csat} =20 mA, h_{FE} =150, V_{cc} =10 V. 7 M